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Abstract. Cyber-attacks can occur at machine speeds that are far too fast for hu-
man-in-the-loop (or sometimes on-the-loop) decision making to be a viable op-
tion. Although human inputs are still important, a defensive Artificial Intelli-
gence (AI) system must have considerable autonomy in these circumstances. 
When the AI system is model-based, its behavior responses can be aligned with 
risk-aware cost/benefit tradeoffs that are defined by user-supplied preferences 
which capture the key aspects of how human operators understand the system, 
the adversary and the mission. This paper describes an innovative approach to 
automated cyber response that is designed along these lines. We combine a sim-
ulation of the system to be defended with an anytime online planner to solve 
cyber defense problems characterized as partially observable Markov decision 
problems (POMDPs). This technical approach appears to be a promising path 
toward computing tractable on-line solutions to complex cyber security problems 
in real-world scenarios. Ongoing work is setting the stage for deployment of this 
capability. 
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1 Introduction 

Cyber analysts are faced with a daunting set of challenges as they try to craft responses 
to increasingly sophisticated cyber-attacks. Typically, analysts are overloaded with too 
many diverse and noisy alerts to process, making it difficult for them to adequately 
assess the cyber situation. This means they often must rely on incomplete and uncertain 
information as a starting point for making decisions about how to act. It also means that 
analysts can struggle to find coherent response sequences that address the broad spec-
trum of alerts received. In order to trace suspicious events to a root cause, it is often 
necessary to correlate information across multiple event streams and over multiple tem-
poral windows. Moreover, analysts often do not understand the implication of their ac-
tions in terms of mission success or failure for the system being defended. This is all 
complicated by the fact that a timely response can be problematic when attacks occur 
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at machine speeds. Much of what occurs today relies on pre-determined responses to 
contingencies, seat-of-the-pants decisions, and sometimes knee-jerk reactions that may 
result in response actions that are worse than the attack itself. 

Many applications of AI to cyber security problems are focused on helping analysts 
manage these challenges. There is a case to be made, though, that even with AI support, 
current approaches to cyber security might be overwhelmed by a new generation of AI-
enabled attacks. Consequently, future systems will have to rely to some extent on au-
tomated reasoning and automated responses – with humans on the loop or out of the 
loop – to ensure mission success and continuously adapt to an evolving adversary.  

This paper describes an approach to automating cyber response that is designed with 
these goals in mind. We start with the premise that, from an AI perspective, it is advan-
tageous to frame the cyber response problem as a sequential decision-making problem 
under uncertainty. This leads naturally to using decision-theoretic approaches to repre-
sent the way a human operator understands the system, the adversary, and the mission; 
and generate responses that are aligned with risk-aware cost/benefit tradeoffs defined 
by user-supplied preferences. 

2 Managing Uncertainty in Cyber Defense 

As we have defined it, automated reasoning about cyber responses can be viewed as a 
form of game-playing where the defender and attacker are each afforded an opportunity 
to make a move.  One way to account for the uncertainty about the system state and 
future projections is to address the cyber response problem directly as a partially ob-
servable stochastic game (e.g. as a partially observable competitive Markov decision 
process [1]). However, suitable state-of-the-art solution techniques for these games are 
only capable of solving relatively small games that must be fully specified in advance. 

An alternative to a pure game-theoretic solution is to focus on resolving the de-
fender’s uncertainty about how to respond, rather than trying to solve the complete 
stochastic game. When the opponent’s policy is fixed (either known or estimated from 
data), we can model a partially observable stochastic game as a partially observable 
Markov decision problem (POMDP) from the perspective of the protagonist [2]. The 
adversarial aspects of the stochastic game are incorporated into the transition function 
of the POMDP. This is an attractive option because recent advances in POMDP solu-
tion techniques make it possible to solve large-scale POMDPs in real time. Addition-
ally, POMDP solvers can find policies that exploit opponent weaknesses. For these 
reasons, our research tackles the cyber response challenges using the formal framework 
of partially observable Markov decision problems1.  
 

 
1  Note that a POMDP approach can compute the kind of general-purpose conservative solution 

one would expect from a game-theoretic approach if we formulate the POMDP to assume a 
robust adversary like a min-max opponent. 
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2.1 Partially Observable Markov Decision Problems (POMDPs) 

Formally, a POMDP can be expressed as a tuple (S, A, Z, T, O, R) where S is a set of 
states, A is a set of actions, Z is a set of observations, T(s, a, s’) is a transition function 
giving the probability p(s’ | s, a) of transitioning to state s’ when the agent takes action 
a in state s, O(s, a, z) is an observation function giving the probability p(z | s, a) of 
observing z if the agent takes action a and ends in state s, and R(s, a) is a reward function 
giving the immediate reward for taking action a in state s. The goal of the decision 
maker is to maximize the expected reward accrued over a sequence of actions. Since 
the states in a POMDP are not fully observable, the only basis for decision making is 
the sequence of prior actions and subsequent observations. A sufficient statistic sum-
marizing the probability of being in a particular state, given a history of actions and 
observations, is called a belief, and a probability distribution over all states is called a 
belief state. Solving a POMDP is a planning problem that involves finding an optimal  
policy which maps belief states to actions. 

Clearly, any search involving probabilistic belief states and arbitrarily long histories 
of actions and observations quickly becomes computationally intractable [3]. Although 
state-of-the-art offline methods for solving POMDPs have made great strides, they are 
not yet powerful enough to address the challenges of real-world cyber response prob-
lems. Fortunately, there are approaches available to (sometimes approximately) solve 
POMDPs online in real time that appear to be suitable for our purposes. 

An alternative to offline planning is to select actions online, one at a time, using a 
fixed-horizon forward search (e.g. see [4] and [5]). Here, the key to making this idea 
effective for real-world problems relies on sampling the belief space, rather than fully 
exploring it. In particular, great efficiencies can be achieved2 by using a black-box sim-
ulation of the problem to generate samples of possible action outcomes. The DESPOT 
algorithm [6] is a widely used approach that leverages simulation in this way. Moreo-
ver, DESPOT is an anytime algorithm for POMDP planning that avoids the worst-case 
behavior of other widely used online solution methods.  

Theoretical results show that, given a suitable number of scenarios to work with, the 
DESPOT algorithm can reliably find near optimal policies with a regret bound that 
depends on the size of the optimal policy. This approach has been successfully applied 
to compute solutions to complex POMDP planning problems for autonomous vehicles 
in real time. Its performance characteristics, and its characteristics as a decision-theo-
retic planner [7], make this algorithm a good choice as the starting point for building a 
POMDP planner to address cyber security problems. 

2.2 Representing Cyber Defense Problems as POMDPs 

The starting point for our POMDP representation of cyber defense problems is a state 
representation that has been used previously [1] to model cyber defense problems as 
partially observable competitive Markov decision processes (POCMDP) to be solved 

 
2  A state of the art algorithm like POMCP [17] can solve POMDPs with state spaces as large 

as 1056 with only a few seconds of computation. 
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offline. The basic idea is to represent system state with a bit string consisting of proba-
bilistic intrusion detection system (IDS) alert predicates for each asset. 

One or more IDS sensors report the state associated with each asset, and we assume 
they report the binary status of an asset as either com-
promised or uncompromised. We currently assume 
these sensors operate independently and we charac-
terize their reliability using a false negative rate and a 
false positive rate. Observations for the defender are 
binary strings showing the (possibly noisy) sensor re-
turns.  

Figure 1 shows a small micro network illustrating 
this representation. The network contains an attacker 
start point, and two target nodes (t1, t2) that can be 
compromised to cause mission impact, each with a 

middle node (m1, m2) separating the attacker from the target. There are four defender 
actions, consisting of two targeted actions (Rm1 - reset m1; Rm2 - reset m2), one global 
action (RA - reset all hosts), and the option to do nothing (NOP). 

Despite its simplicity, this micro network and its associated POMDP provide a useful 
starting point for assessing automated response solutions since it incorporates multi-
stage attacks, probabilistic actions, and uncertain sensing. Previous work has shown 
that optimal policies for even simple cyber security problems in this network can be 
surprisingly complex [8].  This can be true for scenarios involving just small amounts 
of sensor noise3, different kinds of sensor noise mixed together, or sensor noise com-
bined with uncertainty about when the attacker will make a move. 

2.3 Simulating the Cyber Terrain and Attacker/Defender Interactions 

The black box simulator needed for our online planning approach is provided by a mod-
ified version of the Cyber Security Game (CSG) [9]. CSG is a coarse-grained simula-
tion of attacker and defender interactions in cyberspace. The original implementation 
of CSG focused on assessing defensive architectures and deploying static cyber de-
fenses. CSG uses a cyber mission impact assessment (CMIA) model [10] [11] to trans-
late the occurrence of incidents in cyberspace into mission outcome impacts. CSG’s 
defensive cyber decision-making focuses primarily on defending the mission that the 
cyber assets are intended to support. This mission focus helps reduce the scope of the 
cyber defender’s problem since often only a subset of the system’s cyber assets is rele-
vant at any given time. 

 
3  Some optimal policies for defending this small network when sensor noise is present can re-

quire policy graphs having over 100,000 nodes and more than 300,000 edges!  

Fig. 1. Simplified micro network 
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A challenge in cybersecurity is to be able to comprehensively consider the potential  
impacts of what is a staggering number of exploits and cyberattack methods4. To avoid 
having to reason about every possible attack instance, CSG reasons about the effects of 

successful attacks, rather than the 
attack instances themselves. The 
effects of cyber compromises are 
represented by the set of incident 
effects in the DIMFUI [12] tax-
onomy. These effects are summa-
rized in Table 1. 

The DIMFUI effects provide a 
robust representation of cyber in-
cidents. They can account for 
every successful cyber compro-
mise that exists in CVE, and 
which is described by a CAPEC 
attack pattern, as well as the more 
operational mapping of the tech-
niques used by malicious cyber 
actors found in the MITRE 
ATT&CK [13] framework. All 
but one of the DIMFUI effects 
correspond to simple binary 
states of a cyber asset. This 

makes DIMFUI a useful abstraction that allows a cyber defender to reason only about 
binary representations of cyber incidents derived from the impact of 6 DIMFUI incident 

effects per asset, rather than 
hundreds or thousands of at-
tack instances. Moreover, 
the DIMFUI representation 
aligns nicely with our ap-
proach to representing cyber 
defense problems as 
POMDPs.  

In addition to the CMIA 
model, CSG also uses mod-
els of the cyber terrain and 
the capabilities of the at-
tacker and defender. A typi-
cal cyber terrain model used 
in CSG (shown in Figure 2) 

 
4 e.g., The Common Vulnerabilities and Exposures (CVE) list has over 80,000 entries and  the 

Common Attack Pattern Enumeration and Classification (CAPEC) list enumerates over 500 
attack patterns [20]. 

DIMFUI Explanation Typical Attacks 

Degradation 1. Reduction in performance 
or capacity of an IT system 

2. Reduction in bandwidth of a 
communication medium 

3. Reduction in data quality 

4. Limited-effect DoS 
5. Zombie processes using up CPU 

and slowing server 
6. Transfer of non-mission related 

data over a link that slows the 
transfer of mission data 

7. Dropped packets cause an image 
to have less resolution 

Interruption IT asset becomes unusable or 
unavailable 

1. Ping of Death 
2. Wireless Jamming 
3. Wipe disk 

Modification Modify data, protocol, software, 
firmware, component 

1. Change or corrupt data 
2. Modify access controls 
3. Modify/Replace system files 

Fabrication Attacker inserts information into a 
system or fakes components 

1. Replay attacks 
2. DB data additions 
3. Counterfeit software/ components 

Unauthorized 
Use 

Attacker uses system resources for 
illegitimate purposes.  Related and 
often a precondition for other 
DIMFUI. 

1. Access account or raise privileges 
in order to 
modify/degrade/interrupt the OS 

2. Subvert service to spawn a 
program on remote machine 

3. Bandwidth used surfing for porn 
degrades mission critical 
exchanges 

Interception Attacker gains access to information 
or assets used in the system 

1. Keylogger 
2. SQL injection 
3. Crypto key theft 
4. Man-in-middle attacks 
5. Knowledge of component or 

process that is meant to be secret 

 

Table 1. - The DIMFUI taxonomy 

Fig. 2. - Typical details for a CSG cyber terrain model 
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consists of networks, network components (i.e. switches, routers, firewalls), hosts on 
the networks, user groups having access to the hosts, peripherals, applications, services 
and interactors that run on the host, and information used in the performing mission 
function. The representation of user groups, that may have access to multiple assets in 
the network, provides a way to simulate how compromised user credentials can be used 
to access hosts. 

CSG was designed to represent a fully-observable, probabilistic outcome, zero-sum 
game for assessing the employment of static defenses. In order to use CSG with an 
online planner, we had to modify CSG to support queries from an external agile de-
fender with partial and uncertain knowledge of the game state. 

3 Automated Reasoning about Cyber Response 

Our previous analysis of the optimal POMDP solutions for even simplified cyber secu-
rity problems showed how quickly the decisions the defender must make become too 
complex for humans to easily develop on their own. This underscores the need for au-
tomated methods that can solve large-scale POMDPs in real time. Our work on Auto-
mated Reasoning about Cyber Response (ARCR) is a step toward addressing that need 
by combining the capabilities of CSG with an online planner. 

3.1 Experimental Tests of the ARCR Prototype 

We used the Approximate POMDP Planning (APPL) toolkit5 to build an online planner 
that employs the DESPOT algorithm. This toolkit makes it possible to implement a 
customized planner that includes problem-specific heuristic bounds on forward search, 
arbitrary representations for POMDP states, beliefs, actions and observations, and a 
clearly defined interface for our black-box simulator. 

Our current work is applying the ARCR planner to realistic cyber defense problems 
that involve several DIMFUI effects. One series of simulated experimental scenarios is 
illustrated in Figure 3. Figure 3a shows a simple use case involving an information 
fusion mission. Business transaction agents (not shown) generate Sales and Inventory 
files that are placed in File Shares A and B respectively being served from Server 1. A 
client agent accesses paired Sales and Inventory files, performs some (unspecified) fu-
sion operation on them and produces a combined status update file as an output, which 
is placed in Shared Folder C being served on Server 2. It is presumed that there is mis-
sion value to generating the combined status files in a timely fashion, while maintaining 
their integrity and confidentiality.  

Experiments with this use case assumed a persistent attacker with a greedy strategy 
that selects the highest payoff path to a target. In the first scenario (Figure 3b), the 
attacker steals a user credential on its foothold, then uses that credential to move later-
ally from the foothold to Server 1. Once on Server 1, the attacker modifies the Sales or  

 
5 http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/ 
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Inventory data, thereby causing adverse impact to the mission. Assuming the available 
sensors do not detect that credentials are stolen but do detect the lateral move, the eas-
iest defensive response is to eject the attacker and prevent impact by restoring the com-
promised host with action RX. While this response defends against the attack, it does 
not eliminate the threat and the attacker can simply go after the host again. If the de-
fender is provided with an action that can disable a user account (DA), the planner can 
determine that the DA action completely blocks the attacker from doing any damage 
and is therefore the preferred solution (unless disabling the account is too costly or 
adversely impacts the mission). Note that because the planner is using a model-driven 
search, it can consider such response options and block a vulnerable credential pathway 
even without reliable sensor input. We are not aware of any other approach to automat-
ing cyber defense that can provide this capability in the presence of probabilistic out-
come assessments and sensor noise. 

 It becomes a bit more complicated to determine the correct defensive response when 
more than one credential pathway is threatened. The scenario in Figure 3c shows an 
attack that, in addition to the compromised user account enabling access to Server 1, 
also includes a compromise of the Server 2 admin account, giving the attacker access 
to Server 2 and the combined status file. The planner correctly recognizes that that if 
the credentials are not disabled right at the beginning of this scenario, the defender will 
be forced to take a much more costly action later to avoid adverse mission impact. 

Fig. 3. Generic mission use case and cyber defense scenarios 
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The final scenario shown in Figure 3d illustrates how important it is for ARCR to 
have an appropriate model of the problem in order to be  successful. We assume the 
attacker manages to grab three user credentials. Because there are now 3 paths to tar-
gets, but only 2 game steps needed to compromise one of them, a target may get com-
promised and need to be reset before the credential that accesses it can be disabled. This 
dilemma is a consequence of the choice to model the actions that disable accounts in-
dividually, with only one of those actions executable on a given step. A more effective 
model would give the planner an action that disables all compromised accounts. That 
easily handles the need for concurrent primitive model actions in a manner consistent 
with the POMDP formalism. 

3.2 Steps Toward Deployment for Real Applications 

While there is much we can learn about the ARCR approach in simulation, our goal is 
to deploy ARCR in real systems. Toward that end, we are currently implementing a test 
harness on virtual machines that will include an automated adversary emulator [14] as 
the attacker and a collection of analytics to stream the sensor information ARCR re-
quires.  This will enable us to test ARCR performance on real machines for the use 

cases described above and many others.  
The test results for the ARCR prototype to date have demonstrated it can perform 

efficiently for problems of moderate6 complexity. Work is underway on modifications 
to ARCR to improve its ability to handle larger scale problems. We have implemented 
new representations for abstract states and actions in the planner that will facilitate sig-
nificant reductions in the branching factor of the belief tree.  We intend to use these 

 
6 In simple use cases for systems with 1024 assets, the ARCR planner can compute a defensive 

response in less than 10 seconds on a standard laptop. When there are 512 assets, response 
time is under 2 seconds. 
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new representations as the building blocks for converting the planner into a hierarchical 
POMDP solver [15] [16], which will significantly speed up the search of the belief tree.  

The concept of operations for using ARCR in an application is shown in Figure 4. 
ARCR can be applied to any cyber system and repertoire of tactics that can be modeled 
in our modified version of CSG. Clearly, the simulator models must be kept up-to-date 
to reflect changes in the system, its vulnerabilities and the attacker tools that exploit 
them. 

4 Summary 

Future systems will have to rely to some extent on automated reasoning and automated 
responses – with humans on the loop or out of the loop – to ensure mission success and 
continuously adapt to an evolving adversary. 

 This paper describes research suggesting that it is feasible to address this challenge 
by using decision-theoretic techniques to build an automated, rational AI agent that can 
work with human analysts to achieve shared goals in uncertain situations where the 
system mission is at risk. Decision-theoretic approaches can represent the way a human 
operator understands the system, the adversary, and the mission; and generate responses 
that are aligned with risk-aware cost/benefit tradeoffs defined by user-supplied prefer-
ences. 

Our work on Automated Reasoning about Cyber Response (ARCR) has taken several 
successful steps in this direction. By framing the cyber response problem as a POMDP, 
we bring together state-of-the-art techniques for anytime online planning in large state 
spaces with the capabilities for modeling cyber security problems found in the Cyber 
Security Game (CSG). This combination appears to be a promising path toward com-
puting tractable solutions to complex real-world cyber security problems. 
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