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Abstract. With the increasing system complexity and attack sophis-
tication, the necessity of autonomous cyber defense becomes vivid for
cyber and cyber-physical systems (CPSs). Many existing frameworks
in the current-state-of-the-art either rely on static models with unre-
alistic assumptions, or fail to satisfy the system safety and security re-
quirements. In this paper, we present a new hybrid autonomous agent
architecture that aims to optimize and verify defense policies of rein-
forcement learning (RL) by incorporating constraints verification (using
satisfiability modulo theory (SMT)) into the agent’s decision loop. The
incorporation of SMT does not only ensure the satisfiability of safety and
security requirements, but also provides constant feedback to steer the
RL decision-making toward safe and effective actions. This approach is
critically needed for CPSs that exhibit high risk due to safety or secu-
rity violations. Our evaluation of the presented approach in a simulated
CPS environment shows that the agent learns the optimal policy fast
and defeats diversified attack strategies in 99% cases.

1 Introduction

With wide applications spanning from national critical infrastructures (e.g.,
smart grid, transport) to personal domains (e.g., home automation system,
healthcare), cyber and CPS systems become more susceptible to cyber attacks
due to misconfigurations, unpatched, or unknown vulnerabilities. Moreover, at-
tacks like Advanced Persistent Threat (APT) are well-resourced and highly so-
phisticated to cause serious and large damage for critical infrastructures within
relatively a short time [13]. Therefore, automating proactive defense such as
penetration testing and risk identification, and reactive defense such as intru-
sion response is a key to maintain the integrity and security of these systems.

Developing autonomous agents for cyber defense is one of the most promis-
ing solutions to achieve real-time monitoring and response against advanced
attackers with minimal human involvement. Autonomous cyber defense agents
(ACDA) have capabilities to not only timely respond to malicious actions but
also adapt their decision-making dynamically to cope with changes of environ-
ment or attack strategies. On the other hand, to guarantee the mission safety,
ACDA actions must be shown provably correct according to the mission, oper-
ation, and business requirements.
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Researchers have applied game theory [4], sequential decision process [6, 8],
and reinforcement learning [5, 9] to optimize defense response planning. However,
these works have limited real-world applications due to struggling to converge
while having numerous requirements. Several works apply constraint satisfac-
tion problems (CSP) [13, 12] to optimize planning considering all requirements
as constraints. However, these works rely on static models for critical param-
eters which may be very hard to formulate, even probabilistically, due to lack
of domain specific data. Moreover, static assumptions on attackers’ exploitation
capabilities restrict attack behavior unrealistically. Therefore, current state-of-
the-art of autonomous cyber defense lacks a framework that can optimize defense
planning at real-time while satisfying all various requirements.

In this paper, we present a new hybrid autonomous agent architecture that
optimizes defense policies through incorporating the feedback on constraint sat-
isfiability into the decision loop. We formulate the defense optimization problem
as a Sequential Decision Process (SDP) [11], where defense effectiveness depends
on stochastic environment behavior, adaptive attack strategies, and mission-
oriented safety and security requirements. However, ACDA usually lacks domain-
specific experience and data to predict attack behaviors or characterize defense
effectiveness. To accomplish this goal, we develop a novel approach, named Con-
strained Satisfiability-driven Reinforcement Learning (CSRL) approach, to solve
the SDP through learning the environment based on interactive experience with
the environment. CSRL employs model-free Reinforcement Learning [11] to op-
timize the defense decision-making, and applies Satisfiability Modulo Theory
(SMT) [3] for constraints satisfiability verification to provide verifiability and
refinement of the defense actions according to safety and security properties.
The incorporation of SMT architecture guides the agent’s RL algorithm towards
safe and effective defense planning.

Our CSRL approach decouples the policy optimization and constraint satisfy-
ing modules to address the challenge of computation complexity. Instead of feed-
ing constraints directly to the optimizer, the policy is updated based on the sat-
isfiability of current constraint set by computed defense actions. This approach
does not only make the agent computationally feasible for real-time defense op-
timization in a constrained environment, but also offers flexibility in integrating
new or evolved requirements into decision-making. Moreover, the agent reasons
over environment feedback to deduce potential requirements that may remain
undefined or vague due to dynamic factors and incomplete domain knowledge.
Also, the unsatisfiability feedback improves the convergence of agent’s policy
update through steering it to satisfiable regions.

Autonomous defense agents for CPSs will highly need to adopt the CSRL
approach in order to avoid safety and security violations. CPS usually exhibits
many safety and security requirements that defense action must not violate to
maintain the expected behavior of the infrastructure. We develop a use case
scenario that simulates a CPS environment to assess the presented agent ar-
chitecture. We show in our experiments that our agent converges to optimal
planning at reasonable time windows despite having no prior knowledge, and
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the trained agent defeats attackers with diversified strategies within few time-
sequences in 99% cases. Hence, the outcome of our evaluation demonstrates the
applicability of our agent for real-world cyber applications.

2 Overview of Integrated Reasoning Framework for
Autonomous Agent

Fig. 1 illustrates our framework that takes the State Space S (set of possible
states), Defense Action Space A (set of possible defense actions), and optional
previous policy (if any) as inputs. The Constraint Formulation (cons-form) mod-
ule composes initial Constraint Set by formulating known business requirements
or expert knowledge. At the start of time-sequence t, State Characterization
module characterizes the current observation to a state (distinct environment
condition) and sends to both Policy Optimizer and Constraints Learner (cons-
learner). For the given state, Policy Optimizer recommends the optimal action
to Constraints Learner and Pre Execution Satisfiablity (pre-sat) modules.
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Fig. 1: Autonomous Agent Architecture and Workflow. The environment con-
tains an Attacker who observes the environment and strategically executes at-
tack actions. Note# An arrow (input) ending at dotted box specifies that all
modules inside that box receives the input.

The pre-sat module checks if the recommended action can be deployed with-
out violating any constraint of a specific subset of constraint set (i.e., received
from cons-form module). If it fails, the agent sends a Penalty to the policy opti-
mizer. The optimizer updates the policy immediately based on the penalty and
recommends new action during the same time t. Notably, the state remains un-
changed due to not executing the action. In contrary, if the action satisfies all
constraints, the agent executes it on environment as Pre-Satisfied Defense Ac-
tion. In response or concurrently, the attacker executes his next attack action.

Such attack and defense interplays trigger observations, based on which, the
agent infers the action impact. Then, it checks whether the impact conforms
with dynamic or remaining set of requirements (unchecked at pre-sat) at Post
Execution Satisfiability (post-sat) module. If it does not satisfy, the agent sends
a Penalty to the optimizer; otherwise, it quantifies the rewards to send to the
optimizer. The policy optimizer updates the policy based on these rewards or
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penalties. Moreover, based on such interactive experience involving action ex-
ecution and receiving feedback, the agent’s cons-learner learns or deduces new
requirements that are sent to cons-form module to compose new constraint set.

3 Autonomous Agent Architecture

This section describes components of Autonomous Agent architecture at Fig. 1.

3.1 Constraints Formulation

Generally, cyber infrastructures such as CPSs contain diversified requirements
that the computed defense strategy must not violate to maintain its expected
behavior, safety, and security. These requirements can be business and mission-
oriented, expert knowledge (e.g., historical experience), and others. Notably,
expert knowledge may include commands of the network administrator, for ex-
ample, keeping at least 20% free resources to avoid hardware failures. The Con-
straint Formulation (cons-form) module in Fig. 1 formulates all such require-
ments as SMT constraints.

Alongside user-given business requirements and expert knowledge, this mod-
ule updates the constraint set when the agent learns new requirements based on
its interactions with environment. Moreover, it modifies the set due to change
of any business or existing requirements. Therefore, by this module, the agent’s
decision optimization can easily cope with the evolvement of requirements.

3.2 Constraints Learner

It is generally infeasible to know all constraints initially due to lack of deep
domain knowledge or data, whereas some requirements can only be known af-
ter going into the operations due to environmental variability [7]. For example,
defining constraints for power system state estimation requires determining con-
fidence on measured data. However, such domain-specific confidence depending
on the likelihood of errors or sensor failures can only be computed by analyzing
operational behaviors. Besides, deterministic approaches to specify such uncer-
tain behaviors tend to be overly conservative. Hence, critical infrastructures such
as autonomous vehicles, smart grid nowadays endeavor to learn behavioral in-
formation from the environment.

Our agent actively learns new requirements using feedback (i.e., rewards,
observations) of environment. In Fig. 1, the Constraints Learner (cons-learner)
module receives rewards or penalty as consequences of recently recommended de-
fense actions. By analyzing rewards achieved at specific states, the agent deduces
which group of actions should be avoided or preferred at particular environment
conditions. For instance, if termination of a specific communication always in-
duces intolerable business loss, the agent easily understands that the commu-
nication should remain untouched. However, before concluding observations to
any such constraint, the agent must observe consequences of that action for mul-
tiple similar events due to non-deterministic environment behavior. Though we
consider a static value for that required number of events, we plan to determine
it dynamically in future extension. Moreover, there are ongoing research efforts
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to mine such constraints at real-time from observations such as runtime event
logs or physical world information [7].

3.3 Constraints Checker

The Constraint Checker (cons-checker) module (dotted box at Fig. 1) uses SMT
to check whether the recent defense strategy, recommended by Policy Optimizer,
satisfies all formulated constraints or not. Our approach detaches cons-checker
from the Policy Optimizer, because incorporating all requirements explicitly into
optimization algorithm not only hardens the convergence of optimal policies but
also may induce computational infeasibility. Therefore, rather than considering
constraints directly, the optimizer considers rewards/penalty, computed based on
the satisfiability of current constraint set by recent defense actions. This module
performs constraints satisfiability verification in the following two phases:

(1) Pre Execution Satisfiability Checker: This module verifies if there
is any planning that can implement the recommended defense action without
violating any constraint of Pre-satisfiable constraint set (pre-cons). For example,
if the recommended action wants traffic monitoring at several critical links, it
checks whether any monitoring plan can achieve that within affordable energy.
Importantly, pre-cons either do not rely on uncertain and dynamic environment
factors or consider uncertain factors probabilistically. For example, Smart Grid
considers various critical packet/message delay constraints [12] by predicting
packet delay, because it cannot be determined certainly due to unanticipated
network effects such as changes in load balancing, or hardware failures.

In Fig. 1, the Pre Satisfiability (pre-sat) module checks the conformity of the
recommended defense action with current pre-cons. Based on the satisfiability
of these constraints, two following cases appear:

(a) Not Satisfied: If the recommended action fails to satisfy any constraint
of pre-sat, the agent immediately sends a Penalty to the policy optimizer without
executing the action. This is unlike traditional reinforcement learning approaches
that update the policy only after executing the action.

(b) Satisfied: If the recommended action satisfies all pre-sat constraints, it
is executed as Pre-Satisfied Defense Action on the environment.

Our approach of not executing unsatisfiable actions makes the agent’s RL
exploration (exploration of action impacts) more effective by (1) avoiding execu-
tion of irrelevant (ineffective for current condition) actions that induce disastrous
impact on real environment, and (2) offering flexibility for more explorations.

(2) Post Execution Satisfiability Checker This module checks the sat-
isfiability of a subset of constraints, termed as Post-satisfiable constraint set
(post-cons), after executing the pre-satisfied defense action on the environment.
It is beneficial for any cyber system with following properties:

1. Constraints with dynamic or uncertain factors: Certain verifica-
tion of these constraints demands interactions with the environment, because
scrutinizing impacts of actions on these dynamic factors require executing them.
Importantly, even though such a constraint may be satisfied probabilistically at
pre-sat module, the agent checks its satisfiability as post-cons.
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2. Numerous Constraints: Verifying all constraints at runtime before exe-
cuting an action may not be feasible for ensuring real-time defense optimization.
Hence, the decision framework can only verify subset of constraints to ensure
bounded computational overhead, and the remaining constraints need to be ver-
ified after the action execution.

After executing the action, the Post Satisfiability (post-sat) module at Fig.
1 receives observations from the environment, and checks if the impact of action
conforms all post-cons. Based on satisfiability, following cases appear:

(a) Not Satisfied: If the executed defense action cannot satisfy any of
post-cons, the agent sends a Penalty to the policy optimizer for that action.

(b) Satisfied: If it satisfies all post-cons, the agent forwards the recent ob-
servations to Reward Calculation for quantifying the action payoffs and impact.

3.4 Policy Optimizer

Policy optimizer optimizes defense policy by maximizing action payoffs (re-
wards), that recommends an optimal defense action for a particular state. Due
to no or limited knowledge about the environment initially, the agent applies
Reinforcement Learning (RL) that updates the defense policy based on rewards
or penalty received as feedback [11]. Besides exploiting the previous experience
or knowledge, RL algorithms optimally explore the consequences of other un-
explored actions (i.e., RL-exploration). Thus, our agent applying RL computes
optimal policy through learning the environment based on interactive experience.

The agent defines the environment and interactions using State space S,
Observation space O, Action space A, and Reward function R. As shown in Fig.
1, the Policy Optimizer recommends the defense action for the current state and
receives feedback. This module uses Proximal Policy Optimization (PPO) [10] as
RL algorithm, that shows better performance for continuous control tasks with
two advantages: (1) constraining policy update within a small range to avoid
drastic deviation from old policy, and (2) performing multiple epochs on same
minibatch data [10]. The first advantage helps the agent to cope with sensor
noises or errors, whereas the second one aids to cope with the delayed feedback.
PPO optimizes a clipped surrogate objective function, LCLIP (θ), using Eqn. 1.

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] (1)

where, θ represents policy parameter, ε is clip-range hyper-parameter, and
πθ and πold represents new and old stochastic policies respectively. Moreover,

rt(θ) = πθ(at|st)
πold(at|st) specifies the likelihood ratio, where πθ(at|st) specifies the

probability of executing at at state st by πθ. Notably, PPO clips rt(θ) if outside
of [1− ε, 1 + ε] to restrain large update. It formulates the advantage function At
by Eqn. 2, considering V (st+l) (i.e., expected reward of state st+l at time t+ l)
as baseline value to lower variance.

At =

T∑
l=0

γl(rt+l + γV (st+l+1)− V (st+l)) (2)

where, γ ∈ [0, 1) is discount factor that weighs future value, rt+1 is the
current reward or penalty, and T is decision-horizon length until γl > 0.

PPO applies Advantage Actor Critic (A2C) approach [10] to optimize LCLIP (θ),
where Critic estimates V (st) of st, and Actor optimizes the policy based on At.
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3.5 State Characterization

State represents a distinct condition of the environment based on critical en-
vironmental factors. Based on recent observations, the agent characterizes the
current environment condition to a particular state for deciding the next opti-
mal action. Symptoms observed from the environment or network may reveal
the underlying state certainly or partially.

Importantly, most of model-free RL algorithms implicitly address uncertain-
ties associated with observations due to a partial observability, which is unlike
the explicit Belief calculation (probabilistic inference of current state) in model-
based SDP. The applied PPO algorithm for our policy optimzation uses the
characterized observation to decide the next action.

3.6 Rewards and Penalty Calculator

Reward quantifies the payoff of a defense action ad and provides as feedback to
the policy optimizer. Understandably, higher reward to a action for a state bias
the optimizer to select that action due to its objective of maximizing rewards.
Our agent assigns two types of rewards to ad: (1) Penalty if ad fails to satisfy
any pre or post constraint, and (2) Reward otherwise.

The Reward Calculation module at Fig. 1 uses current observations to quan-
tify rewards (can also be negative) based on the current status of the envi-
ronment, improvement or degradation of CPS performance, user feedback on
offered services, defense cost (includes deployment cost and negative impact),
and others. For a stochastic environment, reward function depends on multiple
uncertain factors, and the administrator may change the weight of certain pa-
rameters or introduce new parameters based on his/her refined knowledge or
new data. Whereas, the Penalty Calculation quantifies the Penalty based on
severity of constraints violation.

4 Evaluation

This section describes the setup of experiments that are conducted to assess the
agent’s performance and discusses these experiments’ outcome.

4.1 Experiment Setup

This section describes the use case and simulation parameters of our experiment.
Use Case Scenario: We consider a CPS (e.g., smart grid) setting that

accommodates anomaly-based detectors, to monitor critical connections among
heterogeneous devices and provide probabilistic risk scores based on anomalous
behavior. These detectors consume varying energy based on required computa-
tion, and all detectors cannot be enabled at a time due to limited energy. A
device’s risk score is the mean of all scores provided by enabled detectors at its
multiple connections considering same accuracy of all detectors. There are two
terminating states: (1) Attack-goal-state when the attacker compromise at least
50% of all devices, and (2) Attack-end-state when the agent removes the attacker
from all compromised devices.
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Attack Model: The attacker aims to reach the attack goal state by propa-
gating from compromised devices to connected (neighbor) devices. We consider
three types of attackers: (1) Naive attacker who randomly explores N compro-
mised nodes to propagate, (2) Stealthy attacker who strategically selects N

2 com-
promised nodes to explore while generating lower risk scores, and (3) Aggressive
attacker who is stealthy and can explore N machines.

Agent’s Objective: The agent may restart and reimage a device if its risk
score is above than a threshold. However, such threshold needs to be dynamically
selected to balance the trade-off between false positive (benign device identified
as compromised) and false negative (compromised devices identified as benign)
rate, considering current attack strategies and the number of enabled detectors.
Therefore, the agent aims to dynamically compute the optimal threshold to reim-
age compromised devices and optimally enable detectors for efficient monitoring
after satisfying all constraints at real-time.

RL Model Primitives: The agent’s defense space A includes 3 qualitative
levels for increasing or decreasing anomaly threshold δd (6 actions) followed
by reimaging, 3 levels for increasing or decreasing enabled detector ratio f of
a device (6 actions), reimaging of devices, and do nothing. The state space S
consists of distinct compositions of 6 qualitative ratio levels of compromised
devices (e.g., less than 50%) with 3 levels (e.g., low number) of enabled-detector
(18 states), and 2 terminating states. Importantly, a device, compromised or not,
can be known certainly only after reimaging it; hence, the state characterization
based on currently observed risk scores is uncertain. The agent’s reward function
R is formulated using the following equation:

R(s, a) = −br × Cr − dr × Ci +Ht × Iw −Hg × Cv (3)

where, br is benign (non-compromised) devices reimaged, dr is the number of
reimaged devices, boolean Ht = 1 if the attack ends, boolean Hg = 1 if the
attack reaches goal state, Cr, Ci, and Cv are costs, and Iw is the incentive.

Constraints: Pre-cons contains two vital requirements: (1) bounded ex-
pected energy consumption at a time by enabled detectors, and (2) enabling
at least l detectors for each device. To clarify, for a recommended action such
as lowly increase f , the agent verifies if any detector-subset can satisfy all con-
straints. As Post-cons, it checks whether (1) real energy consumption and (2)
loss due to reimaging benign devices are within tolerable limits.

Implementation: We use Python3.6 to implement the framework and at-
tack model that generates numerous attack scenarios to train and test the agent.
We consider two topologies: Topo 1 with 100 devices, and Topo 2 with 200
devices. Our detectors’ risk score distributions for compromised devices follow
power law, whose tails stretch towards lower ends with increased attack stealth-
iness. We use OpenAI Gym [1] to simulate the environment, and use PPO2 and
MlpPolicy libraries of Stable Baselines [2] to implement PPO.

4.2 Results

We investigate (1) how efficiently the agent defends diversified attack strategies,
(2) how fast the agent converges to optimal defense planning, and (3) how much
benefits the constraints satisfying module offers.
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Agent’s Learning Curve: Fig. 2 illustrates the progression of agent’s
learning during training, where an Episode consists of 1000 time-sequences.

Fig. 2: Reward (Normalized) w.r.t.
training progression.

Here, for instance, rewards of plot (1,1)
are normalized based on maximum re-
ward achieved against Naive attacker at
topo 1. As we can see, the agent con-
verges faster for topo 2 despite slow start,
due to more satisfiable plannings and op-
portunities to explore before termination
state. Within 50 episodes, it reaches 87%
reward against Stealthy attacker (plot
(2,2)), while plot (2,1) reaches only 68%
reward. Though convergences are slower against Aggressive attacker, the agent
reaches more than 80% rewards within 110 episodes in all scenarios.

Fig. 3: CDF of Required Time to
reach Attack End State.

Time to End Attack: Fig. 3
shows a Cumulative Distribution Func-
tion (CDF) that describes how long the
trained agent takes to remove attacker
from all devices during test settings. For
instance, a point (25,75) for plot (2,1)
specifies that the agent stops the attacker
propagation within 25 time sequences at
75% cases. Importantly, the rate of at-
tacker’s reaching to Attack Goal State is
much lower than 1%. The agent termi-
nates attack propagation within 100 time sequences in all cases except against
Naive attacker at topo 2 whose distribution tail stretches until 175 time-
sequences. It stops Aggressive attackers within 25-27 time sequences, while the
stealthy attacker comparatively persists longer.
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Fig. 4: Mean Reward Com-
parison between approaches
with and without Pre Exe-
cution Satisfiability.

Reward Comparison: Fig. 4 shows the ben-
efit of Pre-sat module for topo 1 and 2, where
rewards are normalized by the incentive (Iw) of
attack ending. The agent with Pre-sat always
achieves more rewards, which is maximum (70%)
against Stealthy attacker and minimum (17%)
against Naive attacker at topo 2. Interestingly,
though the agent terminates Aggressive attacker
faster (at Fig. 3), it executes comparatively ex-
pensive actions to defend them.

5 Conclusion and Future Directions

Optimizing defense policies dynamically is a challenging tasks due to uncertain-
ties of environment, strategical and adaptive attacks, and various safety and
security requirements. In this paper, we present an architecture of Autonomous
Defense Agent that optimizes defense planning at real-time using model-free Re-
inforcement Learning, while guaranteeing satisfaction of all requirements using
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SMT-based constraints satisfiability verification. Moreover, our agent reasons
over environmental observations to deduce new requirements and learn defense
consequences. Our evaluation shows that our trained agent can defeat diver-
sified attack strategies efficiently without requiring prior deep knowledge. Our
approach is flexible to incorporate new and modified requirements easily into
decision-making, and offers better scalability for real-time defense optimization
in a constrained stochastic environment with dynamic or uncertain properties.

This architecture creates many interesting future research directions. First,
our agent now learns new requirements based on rewards, but it will be inter-
esting to find out how automated approaches can be developed to learn new
requirements from network symptoms (e.g., logs, packets traces, and others).
Besides, it is important to understand how much confidence the agent should
at least have before introducing any new requirement. Second, defense payoffs
may not always be observed immediately, and feedback such as user-complains
may arrive several days later. We plan to investigate approaches to integrate the
likelihood of such delayed feedback efficiently into policy optimization. Third,
we would like to assess the scalability of the agent for higher dimensions of
requirements, state space, and defense space of real-world applications.
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