
Achieving Active Cybersecurity through Agent-Based 

Cognitive Models for Detection and Defense 

Robert Thomson1[0000-0001-9298-2870] , Edward A. Cranford2[0000-0002-6081-4570], 

and Christian Lebiere2[0000-0003-4865-3062] 

1 United States Military Academy, West Point, NY 10996, USA 
2 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA 
robert.thomson@westpoint.edu; {cranford, cl}@cmu.edu 

Abstract. We propose a methodology for the development of autonomous 

intelligent cyber-defense agents based on cognitive models. Those cognitive 

models inherit both mechanism and limitations from cognitive architectures 

implementing unified theories of human cognition. The mechanisms endow the 

models with powerful characteristics of human cognition, including robustness, 

generalization and adaptivity. The limitations enable the models to predict the 

cognitive biases of human teammates and adversaries, allowing them to augment 

the former and exploit the latter. This paper provides an introduction to the 

cognitive mechanisms used, in particular the subsymbolic activation mechanisms 

underlying symbolic knowledge representation enabling human-like learning and 

adaptivity. We illustrate the approach with a number of applications, including 

models of sensemaking in geospatial intelligence, deceptive signaling for cyber 

defense, and malware and intrusion detection systems. 
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1 Introduction 

This article presents an overview describing how cognitive models have been applied 

for both understanding and augmenting human analyst performance and as autonomous 

agents in cybersecurity applications. Using the ACT-R cognitive architecture as a 

unifying theory, we present a framework for understanding how to leverage human-

inspired heuristic reasoning to process large amounts of information, well beyond 

human capacity and without the limitations of human cognitive biases (Thomson, 

Lebiere, Anderson, & Staszewski, 2014). ACT-R accurately models human cognition 

in a variety of decision-making (Lebiere, Gonzalez, & Martin, 2007; Erev et al, 2010) 

and general intelligences tasks (Lebiere, Gonzalez, & Warwick 2009), as well as in 

complex domains such as intelligence analysis (Lebiere, et al., 2013). These models 

have also performed well on reasoning tasks where historical knowledge is sparse, 

limited, or dissimilar to the current context. To scale to complex tasks involving 

substantial human expertise (e.g., Sanner et al, 2000), models can abstract from the 

high-fidelity framework aspects of the task that cannot be constrained by data and are 

not directly related to performance (Reitter & Lebiere, 2010). 

ACT-R provides an experimentally validated general model for human cognition as 

a hybrid symbolic/sub-symbolic architecture (Laird, Lebiere & Rosenbloom, 2017), 
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which provides a clearer distinction between automatic and implicit (System 1) 

processes from deliberative and explicit (System 2) processes (Kahneman, 2011). 

While traditional dichotomies argue that System 1 processes are based on procedural 

knowledge and System 2 processes on declarative knowledge, ACT-R instead shows 

that operations over sub-symbolic elements (based on activation dynamics) can be seen 

as System 1, while operations over symbolic elements can be seen as System 2 

(Thomson et al., 2014). Instance-based learning (IBL; Gonzalez, Lerch, & Lebiere, 

2003) is a commonly used modeling approach, which argues that expertise is gained 

through the accumulation and recognition of experienced events (i.e., instances), which 

form the primary basis for decision-making. The dynamics of an instance’s sub-

symbolic activations determine which instances are likely to be most relevant for a 

given situation and can also explain why they were selected and what factors came into 

play. Supporting this structure, Lebiere, Gonzalez, and Warwick (2009) have shown 

how recognition-primed decision-making and IBL have similar mechanisms and 

predictions in naturalistic decision-making. 

In the present review we wish to focus on two features of cognitive models: (1) how 

cognitive models can be used to understand and augment human analysts, including the 

source and remediation of biases as well as an in-the-loop aid for personalized 

modeling; and (2) as autonomous agents in the context of cybersecurity tasks including 

malware identification and instruction detection. In embedded applications, 

autonomous agents may need to interact with the adversary. We argue that cognitive 

models are ideally suited for this kind of interaction as they are able to simulate the 

underlying cognitive processes of the adversary (even if the adversary is an algorithm; 

Somers et al., 2020) as well as those of a human teammate.   

2 What is a Cognitive Model? 

A cognitive model is an introspectable abstraction of human reasoning processes. When 

embodied in a cognitive architecture (such as ACT-R), it provides an empirically 

validated and falsifiable algorithm for understanding human decision-making. ACT-R 

is a hybrid architecture using both symbolic information and sub-symbolic processes 

operating over these symbolic elements. Symbolic information structures provide the 

knowledge representation and reasoning characteristic of expert human performance, 

while sub-symbolic statistical processes provide the adaptivity and robustness of 

everyday common sense activities. ACT-R is formally broken up into two main 

modules: declarative knowledge and procedural knowledge. Declarative knowledge is 

knowledge of facts and what is traditionally thought-of as human memory, while 

procedural knowledge is knowledge of the skills and abilities that generally utilize 

declarative facts to make decisions. For the purpose of this paper, we focus on 

declarative knowledge, but for a fuller discussion see Thomson et al. (2014).  

Declarative knowledge is represented formally in terms of chunks. Chunks have an 

explicit type and consist of an ordered list of slot-value pairs of information. Chunks 

are retrieved from declarative memory by an activation process: 

 𝑃𝑖  = (𝑒𝐴𝑖/𝑠) / (𝛴𝑖𝑒
𝐴𝑗/𝑠) (1) 
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where Pi is the probability that chunk i will be recalled, Ai is the activation strength of 

chunk i, ∑Aj is the activation strength of all of eligible chunks j, and s is momentary 

noise inducing stochasticity by simulating background neural activation. The activation 

of a given chunk i (Ai) is governed by its summed base-level activation (Bi) reflecting 

its recency and frequency of occurrence, partial matching score (Pi) reflecting the 

degree to which the chunk matches the retrieval request, and finally a noise value (Ɛi) 

including both transient and permanent noise: 

 𝐴𝑖 = 𝐵𝑖 + 𝑃𝑖 + 𝜖𝑖 (2) 

Sub-symbolic activations approximate Bayesian inference by framing activation as log-

likelihoods, with base-level activation (Bi) as the prior, the sum of spreading activation 

and partial matching (Pi) as the likelihood adjustment factor(s), and the final chunk 

activation (Ai) as the posterior. 

A chunk’s base-level activation is computed by summing across the number of 

presentations n for chunk i the log of the time tj since the jth presentation discounted by 

the decay rate d, with an optional constant βi added to this value: 

 𝐵𝑖 = 𝑙𝑛 (𝛴𝑗=1
𝑛 𝑡𝑖

−𝑑) + 𝛽𝑖 (3) 

Base-level activation corresponds to the Bayesian prior of a chunk’s activation. A 

benefit of base-level activation is that it provides an automated procedure for 

frequency-based strengthening as well as temporal discounting. Chunks are also 

compared to the desired retrieval pattern using a partial matching mechanism (Pi) that 

subtracts from the activation of a chunk i its degree of mismatch Mki to the desired 

pattern k, additively for each component and chunk value: 

 𝑃𝑖 = 𝛴𝑘𝑃𝑀𝑘𝑖 (4) 

While the most active chunk is usually retrieved, a blending process (i.e., a blended 

retrieval; see Lebiere, 1999; Wallach & Lebiere, 2003) can also be applied that returns 

a derived output V reflecting the similarity Sij between the values of the content of all 

chunks i and compromise value j, weighted by their retrieval probabilities Pi reflecting 

their activations and similarity scores: 

 𝑉 =  𝑎𝑟𝑔𝑚𝑖𝑛 𝛴𝑖 𝑃𝑖(1 − 𝑆𝑗𝑖) (5) 

This process enables the generation of continuous values (e.g., probabilities) in a 

process akin to weighted interpolation. 

Cognitive architectures can be used for AI purposes by leveraging basic cognitive 

mechanisms while not necessarily respecting all their constraints. Reitter & Lebiere 

(2010) introduced a modeling methodology called accountable modeling that 

recognizes that not every aspect of a cognitive model is reflected in measurable 

performance. In that case, it is arguably better to specifically state which aspects of the 

model are not constrained by data, and rather than mockup those aspects in plausible 

but impossible to validate manner, simply treat them as unmodeled processes. This 

approach results in simpler models with a clear link between mechanisms used and 

results accounted for, rather than being obscured by complex but irrelevant machinery. 
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2.1 Tripartite Explanation of How Biases Emerge 

An essential feature in being able to explain how a model performs decision-making is 

to examine not only the sources of generating expertise, but also to examine both where 

heuristics come from and how they are applied; and how they lead to biased behavior. 

In our account, biases arise from three sources: (1) the mechanisms and limitations of 

the human cognitive architecture; (2) the information structure of the task environment; 

and (3) the use of heuristics and strategies to adapt performance to the dual constraints 

of cognition and environment. The first level of description entails an understanding of 

the constraints imposed by the mechanisms and limitations of the cognitive 

architecture. These include an understanding of the impact of recency and frequency 

on the likelihood of an instance being retrieved. Other sources of constraint include the 

serial nature of human reasoning, system, memory limitations, and matching human 

time-course of responses. The second level of description entails an understanding of 

the constraints imposed by the task environment. An understanding of the statistical 

and quantifiable regularities within the task environment drives the overall ability and 

rate of learning, and the nature of environmental feedback provides further evidence. 

Using an example from Simon (1990); if you want to study the movement of an ant 

across the beach you need look no further than the hills and valleys in the sand to 

determine its path. This level of description is generally captured in ACT-R by specific 

goals that drive a set of productions that represent the cognitive skills required for 

solving the task. The third level of description entails an understanding of how the joint 

constraints of architecture and task environment influence the kinds of heuristics and 

strategies available to the model. This is the explanation of the selection and sequence 

of production rules firing. In strategy selection, even simple heuristic structures can 

greatly influence the output of the model, which in turn could overly constrain decision-

making while also making complex problems tractable. In other words, the detection 

of affordances provided by the task environment influences the kinds of information 

that the model can accumulate and the actions that the model may perform.   

We can also use model tracing to measure the genesis and mitigation of biases. 

Model tracing is a technique where a model is forced to respond with some or all of the 

same values as a human participant, accumulating the same experiences. The internal 

states of the model can then be examined to determine the influence of these 

experiences on future decisions (Somers et al., 2020; Cranford et al., 2020). By 

examining commonalities between the model’s internal states and human behavior, 

modelers are potentially able to make causal claims about the nature of mental 

processes; that is, to explain how human performance (a bias) is produced by various 

cognitive mechanisms and their interaction. We describe several examples below. 

3 Using Cognitive Models to Understand Human Performance 

3.1 Cognitive Models of Sensemaking 

As an instance of capturing human decision making patterns, we will focus on a 

cognitive model of sensemaking in the context of six geospatial intelligence analysis 

tasks for the IARPA Integrating Cognitive-Neuroscience Architectures for 
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Understanding Sensemaking (ICArUS) Program (see Lebiere et al., 2013 for a 

complete description of the tasks and quantitative fits). Sensemaking is a concept that 

has been used to define a class of activities and tasks in which there is an active seeking 

and processing of information to achieve understanding about some state of affairs in 

the world. Our sensemaking model is composed of several related components. The 

first learns statistical patterns of events and generates probability distributions of 

category membership based on the spatial location and frequency of these events. The 

second applies probabilistic decision rules in order to generate and revise probability 

distributions of category membership, and then makes decisions about the allocation of 

resources based on the probabilities of the causes of perceived events. 

The first task involved watching a series of attacks on a map from several groups 

and predicting the center of each group’s area. When group centers were generated 

directly from a retrieval of events represented in memory, the blended retrieval process 

in ACT-R reflected a disproportionate influence of the most recent events given their 

higher activation. A strategy to combat this recency bias consisted of generating a final 

response by performing a blended retrieval over all the group centers (both current and 

past) stored in memory, thereby giving more weight to earlier events by compounding 

the influence of earlier centers over the subsequent blended retrievals. This effectively 

implements an anchoring-and-adjustment process where each new estimate is a 

combination of the previous ones together with the new evidence. Moreover, because 

there are an equal number of centroid-of-centroids chunks, there is no effect of base-

rate on the model’s later probability judgments, even though the base-rate for each 

category is implicitly available in the model based on the number of recallable events.  

To leverage an instance-based learning (IBLT) approach for probability adjustment 

and resource allocation, the ACT-R model’s memory was seeded with a range of 

instances consisting of triplets: an initial probability, an adjustment factor, and the 

resulting probability. The factor is set by the explicit rules of the task. When the model 

is asked to estimate a probability, it simply performs a blended retrieval specifying prior 

and factor and then outputs the posterior probability. When provided with linear 

similarities between probabilities (and factors), the primary effect is an underestimation 

of the adjusted probability for much of the initial probability range (i.e., an anchoring 

bias), with an overestimation on the lower end of the range (i.e., confirmation bias). 

The model then generates a resource allocation distribution by focusing on the leading 

category and determining how many resources to allocate to that category. By priming 

the model with the winner-take-all and probability matching strategies, it is possible for 

the model to learn any strategy in between them. Instance-based learning can thus be 

seen in this instance as a highly flexible metacognitive strategy with the effects 

themselves a priori predictions of the architecture. 

In more general terms, when evidence is received, it is matched against various 

hypotheses and the best matching one is retrieved, leading to a boost in activation.  If 

contradictory evidence starts accumulating, two biases will emerge. First, new evidence 

will sometimes be misinterpreted because the dominant hypothesis is most active and 

can overcome some degree of mismatch. Second, even if the evidence is correctly 

interpreted and the correct hypothesis reinforced, for the new hypothesis to attain 

primacy it will take some time to sufficiently build activation and for the activation of 

the previously dominant hypothesis to sufficiently decay. This process has been given 

a number of names, from anchoring bias to persistence of discredited evidence. 
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3.2 Cognitive Models to Aid Autonomous Defenses 

In recent research in cyber-deception for defense, we have developed methods for using 

cognitive models of adversaries to drive personalized, adaptive defense algorithms 

(Cranford et al., 2020). Many current cyber-security algorithms are developed using 

traditional game-theory methods that often assume perfectly rational adversaries. 

Meanwhile, cognitive architectures such ACT-R aim to accurately represent the 

cognitive processes that give rise to boundedly rational human behavior and emergent 

cognitive biases. For example, Cranford et al. (2020) created an IBL model in ACT-R 

that accurately predicts attacker decisions in an experimental game that simulates an 

insider attack scenario, dubbed the Insider Attack Game (IAG). An automated defense 

algorithm optimizes the allocation of limited defenders across targets in a network, and 

the rate at which it sends (possibly deceptive) signals to attackers in an effort to deter 

attacks. The goal of the defense algorithm is to optimize the rate of deceptive signals 

so that the attacker maintains belief in the signal and withdraws in its presence. The 

results showed how the combination of task structure and cognitive biases, such as 

confirmation bias, lead to far more attacks than predicted of a perfectly rational 

adversary. According to IBLT, a confirmation bias arose due to effects of frequency 

and recency of instances in memory. Because the task was structured in such a way that 

all targets have positive expected values (i.e., it is more likely than not that a target is 

undefended), it was more likely to experience a positive reward than a negative penalty 

on any given trial. Given enough positive reinforcement early on, the attacker begins 

to generate expectations of positive rewards that are self-reinforcing, and it is unlikely 

for them to experience enough negative outcomes in sequence to introduce negative 

expectations. As a result, the confirmation bias emerges naturally from the availability 

of positive information in memory that influences future retrievals. 

One reason the defense algorithm performed less well than expected was that it failed 

to account for human biases. Another shortcoming of traditional security algorithms is 

that they are static and tailored to a population, or average, user. In reality, individuals 

display vastly different behavior. As Cranford et al. (2020) showed, the cognitive model 

not only predicted the mean human behavior throughout the game, it was able to 

accurately predict the full range of human behavior, solely as a result of stochasticity 

in retrieval leading to different trajectories of experience, thereby influencing future 

decisions. As such, some model runs do not exhibit strong confirmation bias, just like 

some humans do not. Given our model can account for the full range of human 

behavior, we leveraged model-tracing techniques developed from research on cognitive 

tutors, to adapt a model run to a specific individual (Corbett and Anderson, 1995). 

As an adversary interacts with the system, we use model-tracing to align the model’s 

memory with the observed (and sometimes inferred) experiences of the human. With 

more experience, the model is able to more accurately predict an attacker’s decisions 

in real time. Using this method, the model can drive an adaptive defense algorithm. 

Cranford et al. (2020) attempted to alleviate the observed confirmation bias in the IAG 

by providing blocks of only truthful signals to those participants that are expected to 

continue to attack despite the presence of a monitor signal. The idea, according to IBLT, 

is that these attackers will only have negative attacking experiences given a monitor 

signal and, with enough of such experiences, will start withdrawing. The technique 

proved effective, but only for a portion of participants. Further examination showed 
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that a portion of participants that continued to attack despite the intervention also 

reported completely ignoring a signal feature. Our own model that ignored the signal 

in its decisions accurately reflected this behavior. These results show that any efforts to 

adjust the rate of signals for such attackers is in vain, but also that these techniques 

could be used instead to shift coverage toward the more desirable targets or to craft 

more desirable targets (e.g., honeypots). 

4 Cognitively-Inspired Models for Detection 

As an extension of the IARPA ICArUS project, we modeled a malware dataset 

identified by Mandiant (2013) using dynamic sandbox output from ANUBIS (2014). 

From the ANUBIS data, a total of 1740 malware attributes were identified. We studied 

all families where there were at least 5 samples successfully processed by ANUBIS, 

which provided 15 families (including BISCUIT, NEWSREELS, GREENCAT, and 

COOKIEBAG) and 137 samples. Based on malware family description, we associated 

a set of tasks with each malware family (that each malware in that family was designed 

to perform). In total, 30 malware tasks were identified for the given malware instances. 

On average, each family performed 9 tasks. 

The cognitive model operates as follows: given a malware sample the model 

generates a probability distribution over a set of malware families, then infers a set of 

likely malware intents based upon that distribution. The model primarily leverages the 

activation calculus underlying retrieval from declarative memory. Each sample is 

represented by its set of static and dynamic attributes. The model operates in two stages: 

first by family, then by intent. To assign family, the model generates a probability 

distribution over the set of possible malware families from the activation in long-term 

memory of the chunks representing instances of those families. To assign intent in a 

second pass the model uses a similar process to generate likely intents from a 

representation linking each malware family to known intents.  

The model uses an iterative learning method that reflects the cognitive process of 

accumulating experiences and using them to make decisions. In this case a chunk is 

created for each malware instance and represents the set of attributes together with the 

family identification. The activation of each chunk is learned by to the mechanism 

described in Section 2. The power law decay makes it sensitive to the recency of 

presentation, allowing both for old malware instances to quickly decay away as well as 

for new ones to rapidly reach prominence.  If the same instance (i.e., same attributes 

and family) is presented multiple times, the activation will also reflect the frequency of 

presentation. The effect of context, as represented by the set of attributes of the current 

malware, will be reflected through the partial matching mechanism. The match score 

of a chunk to the current context will reflect the similarity between the attribute sets of 

the current malware sample and each instance in memory, as measured by the dot 

product between the respective attribute vectors. The retrieval process then extracts 

from the chunk its family identification. The blending mechanism computes a 

probability distribution over all family values, reflecting the activation of each instance.  

The instances learn to associate the probability distribution over families computed 

for the given malware with its actual intents. Given a new malware instance, a retrieval 

process matches its family probability distribution against those of previous instances 
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and extracts the probability of each intent using the same blending process used for 

generating the family probabilities. Intents reaching the 50% threshold are again 

selected. The key aspect of this process is that it is now sensitive to the entire probability 

distribution over families rather than simply a sum of its values. Table 1 indicates the 

F1 score model as well as several standard machine learning techniques for LOOCV. 

Table 1. Performance Comparison of ACT-R vs Other Methods 

Method DT NB LOG-REG SVM ACT-R IBL 

LOOCV F1 Score .80 .71 .82 .89 .93 
 

To see how the model generalizes to unseen malware families, we performed a leave-

one-family-out comparison where we test against one previously unseen malware 

family. The instance-based model significantly outperformed the other approaches in 

terms of precision, recall and F1. We also tested generalizability using the GVDG and 

Metasploit malware generation tools, with the model still consistently outperforming 

other techniques, including when only receiving a sparse 10% of the training.  

4.1 Intrusion Detection 

The vast majority of state-of-the-art techniques for intrusion detection are ML-based, 

with ANN, SVM, Decision Tree, Bayesian, k-means, k-NN, and Fuzzy Logic being the 

most used across all IDS techniques reviewed by Hindy et al. (2020). ML techniques 

usually require large amounts of data to learn from and build a knowledge 

representation that can be used to inform the decision classifier (Hamed, Ernst, & 

Kremer, 2018). While ML techniques have proven useful for many classification tasks 

across many domains, particularly in image classification, the cybersecurity domain 

presents unique challenges in that the patterns of incoming data are constantly changing 

in real time (Hodo et al., 2017). Therefore, adaptive techniques are warranted that can 

learn quickly with new and sparse data. 

IBL techniques grounded in cognitive architectures may prove a useful technique 

then because such models need few training instances (and no separate learning stage) 

to make highly accurate predictions and can quickly adapt to changing environments 

as new instances are added to the knowledge base. Some recent IDS techniques have 

shown promise in overcoming limitations stemming from novel attacks. For example, 

Al-Hawawreh, Moustafa, and Sitnikova (2018) use a deep auto-encoder and deep 

feedforward neural network to learn with new incoming information. Similarly, Salo, 

Nassif, and Essex (2019) used an instance-based algorithm to aid classification in their 

ensemble approach to IDS, which alleviated limitations of classifying novel instances. 

In their review of IDS techniques and datasets, Hindy et al. (2020) point out that one 

limitation of current ML techniques for IDS are that datasets lack real-life 

characteristics of recent network traffic and therefore fail to generalize under real-world 

deployment, cannot adapt to changes in network topology, and perform poorly against 

novel attacks. According to their review, the KDD-99 dataset is the most prominently 

used dataset, in over 50% of IDS techniques reviewed, but is outdated. Therefore, 

Moustafa and Slay (2016) more recently created a dataset to combat the lack of modern 

low-footprint attack styles and modern normal traffic scenarios seen in prior datasets 

and included a different distribution of training and testing sets. Their dataset, the 
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UNSW-NB15, contains 9 attack types, including Fuzzers, Analysis, Backdoors, DoS, 

Exploits, Reconnaissance, Shellcode, Worms, and other “generic” attacks, and defines 

49 features of the network traffic, providing for robust coverage of current attack 

profiles. Moustafa compared the performance of several IDS techniques between the 

KDD-99 and UNSW-NB15 datasets. The results showed that detection rates were 

generally higher for the KDD-99 datasets compared to the UNSW-NB15, highlighting 

the greater complexity and realism of the newer dataset. The present research therefore 

uses the UNSW-NB15 dataset to evaluate the performance of our IBL cognitive 

modeling approach to intrusion detection. 

4.2 Cognitive Model description and IDS methodology 

The cognitive model is a version of ACT-R models of categorization (e.g., Lebiere, 

2005). For each attack the model associates a set of features describing the attack with 

its type. The current set of features was the same chosen in existing models (cite) to 

make our approach more comparable to existing ML models. A more elaborate 

approach would have been to use the reinforcement learning-like ACT-R mechanism 

that learns production utilities from external rewards to select the most effective feature 

set (Martin et al., 2018). Since the partial matching mechanism is key to generalize 

across instances, similarities were set between the feature data types. A linear similarity 

function was used for real values with a scaling factor of 0.1.  For integer values a log-

ratio similarity function was used with a base of 2. For symbolic values, the maximum 

dissimilarity value was left at the default value of -1.0.  

Even though the cognitive model doesn’t require a separate training phase, to make 

our results comparable to ML algorithms we used the separate training and testing sets 

provided. Rather than use all the examples provided in the training set (over 175 

thousand) we created 10 instances for each attack type (roughly the log of the number 

of examples of that type), and 90 instances of normal traffic (same number of examples 

as the total number of intrusion instances) for a total of 180 instances, or about 1/1000th 

of the total size of the training data set. 

Results. We tested a range of values of the mismatch penalty parameter from 0.5 to 

2.5 as well as both low and moderate noise values (0.01 and 0.1, respectively). 

Performance of the model was largely insensitive to parameters. The percentage of 

correct attack type identification was greater than 50% (as opposed to a change 

probability of 10%) with a high of 58%. Performance rises to 81% correct when only 

detecting intrusion as opposed to diagnosing attack type. 

5 Conclusions 

We introduced our methodology for autonomous intelligent cyber-defense agents 

based on cognitive models of human intelligence. Those models capture powerful 

characteristics of human cognition such as efficient learning, robust generalization, and 

continuous adaptivity. They can also reflect the limitations of human teammates and 

adversaries in order to compensate or exploit them. This approach aims to leverage 
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decades of research and applications of cognitive architectures (Laird, Lebiere & 

Rosenbloom, 2017) to serve as the basis for a broad, validated AICA framework. 
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