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Abstract. The static nature of network defenses provides an asymmet-
ric advantage to the attacker. Moving Target Defense (MTD) aims at
continuously shifting the underlying infrastructure to present an inaccu-
rate view of the network to the attacker, and increase the complexity of
mounting attacks against the network. An adaptive adversary may, how-
ever, understand the MTD over time. Hence the defense strategy needs
to continuously evolve defense and adapt to the emerging threats. The
defense strategy also needs to consider the dynamic nature of the net-
work infrastructure. The defense strategy should have minimal impact
on service availability. In this research work we present a Multi-agent
reinforcement learning framework that model’s attacker and defender’s
interactions as a dynamic multi-stage game in a purely adversarial setting
in a Software-defined Network (SDN) managed cloud environment. The
game-theoretic model accounts for uncertainty associated with the state
of the underlying network when deploying optimal MTD. Our empirical
evaluation shows better reward for defenders when using a reinforcement
learning policy against an adaptive adversary in different game-theoretic
settings.

Keywords: Multi-agent Reinforcement Learning, Moving Target De-
fense (MTD), Deep-Q Learning (DQN), Software-defined Networks (SDN),
Markov Game

1 Introduction

Traditional defense mechanisms suffer from many shortcomings. First, the at-
tacker has enough time to scan the network infrastructure for security vulner-
abilities. Second, the defense mechanisms such as Firewall, Intrusion Detection
and Prevention Systems (IDPS) are signature-based. Hence, they can identify
and stop only known attacks. The goal of Moving Target Defense (MTD) is to
increase the attack’s complexity by continuously moving the components of the
underlying system. MTDs not only increase the uncertainty for the attacker,
but also disrupt the chain of attack carefully crafted by adversaries for targeting
unknown attacks like Advanced Persistent Threat (APT) [I]. One key challenge
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that limits the adoption of MTD in a Software-defined Network (SDN) environ-
ment is the impact of change in network configuration on the system performance
and usability, as discussed by Sengupta et. al. [I8]. The impact of the dynamic
placement of NIDS on network latency has been considered in [22] and [16].
The performance cost associated with MTD is considered as utility values in
a repeated game setting by research works [BII3]. Software-defined Networking
(SDN) [10] provides centralized monitoring and orchestration for the network.
SDN has emerged as a state-of-the-art network architecture for data centers
and backbone networks. SDN decouples data plane and control plane to provide
key network functions such as routing algorithm and load-balancing using pro-
grammable APIs. In this paper we model attacker and defender’s interactions
as a two-player game. We consider that both attacker and defender learn each
other’s strategy over time. The defender has a fully observable environment,
and defender can deploy different MTD countermeasures to deal with attacker’s
actions such as reconnaissance, targeted attacks, etc. We use Common Vulner-
ability Scoring System (CVSS) [14] metrics such as impact score, and access
complezity for defining the rewards obtained by attacker and defender based on
their actions as discussed by Chowdhary et. al. [4]. We use multi-agent reinforce-
ment learning framework based on Deep-Q Learning (DQL) [24] to model the
attacker’s and defender’s actions. Each MTD action can have some impact on
network services, such as availability impact, conflict of security rule deployed
as part of MTD with existing security rules [I2]. Some research works consider
the performance impact induced by defensive countermeasures as a penalty on
game-theoretic model [16]. Based on similar lines, we incorporate the policy
conflict scenarios in our game-theoretic model. In summary the key contribution
of this research work are as follows: a) A zero-sum dynamic game formulation
between the attacker and defender, considering the impact of defense counter-
measures (policy conflict scenarios’) as part of reward modeling. We introduced
domain-specific reward modeling, i.e., the model considers the CVSS score of
vulnerability, difficulty of compromising a vulnerability (CVSS access complex-
ity), attacker and defenders’ effort, and effect of MTD countermeasures. b) A
multi-agent reinforcement learning (MARL) scheme for obtaining the optimal
Moving Target Defense (MTD) strategy. The MARL formulation accounts for
intelligent attackers’ (who learn defenders’ strategy over time), and provides an
optimal reinforcement learning solution to defend against adaptive adversaries in
a competitive game. The optimal defender obtained using reinforcement learn-
ing

2 Related Work

2.1 SDN-based Moving Target Defense (MTD)

The cost-benefit analysis of MTD adaptations against network mapping attempts
has been discussed by [9]. The SDN-based MTD can introduce various coun-
termeasures at the network-level such as network shuffling [7], route modifica-
tion [2I], IP and port obfuscation as discussed by Wang et al. [20]. Chowdhary
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et al. [3] utilized SDN-environment to analyze the hosts mounting DDoS attacks
on critical network services. The SDN-controller downgrades network bandwidth
(how to switch) using a Nash-Folk theorem-based punishment mechanism. Ja-
farian et al. [8] use OpenFlow based random host mutation technique to switch
virtual IP (what to switch) targeted by reconnaissance attempts. This work pro-
pose considers how to mutate IP address with a high degree of unpredictability
while keeping a stable network configuration and minimal operational overhead.
Debroy et. al. [5] used the SDN framework to identify the optimal migration rate
(when to switch) and ideal migration location for VMs under the DoS attack.

2.2 MTD as a Game-Theoretic Model

A multi-agent partially observable Markov Decision Process model for MTD
has been proposed by Eghtesad et. al. [6] The research work considers Deep-Q
Learning [24] and Double Oracle (DO) algorithms to model attacker-defender in-
teractions as two-player games. However, the reward model and action space are
quite simplistic in this research work. Only control/disrupt actions are consid-
ered for an attacker and confidentiality/availability for the defender. The binary
reward values used in modeling do not represent the actual threat level given
the current network setup. A mullti-agent reinforcement learning solution us-
ing Bayesian Stackelberg Markov Games (BSMGs) was introduced by Sengupta
et. al. [I9]. The framework models uncertainty over attacker types and MTD
systems. This research uses domain-specific reward metrics based on the Com-
mon Vulnerability Scoring System (CVSS) [14]. The framework provides optimal
MTD for web applications, proposed Bayesian Strong Stackelberg Q-Learning
(BSS-Q) algorithm converges to optimal policy for MTD domains with incom-
plete information.

3 Background

In this section we consider the threat model and describe the background con-
cepts associated with the game-theoretic formulation. Consider the attacker has
access to the end-hosts h1-h5. The attacker’s objective is to obtain information
about the software running on the end hosts (e.g., web server, SQL database).
The attacks aimed at discovering network topology and software vulnerabilities
are generalized as ‘Reconnaissance (Recon)’ attacks (see Figure[l)). The informa-
tion obtained from the Recon phase is used by the attacker to mount attacks such
as SQL Injection (SQLI), Cross-site scripting (XSS). We generalize these attacks
as ‘Exploitation’. The consequence of these attacks is information disclosure and
loss of data.

The defender can use Moving Target Defense (MTD) techniques to delay
the attack progress. Some MTD countermeasures we considered include Shuffle
(host VM migration), and IP mutation (dynamic IP address reassignment). The
use of these countermeasures can, however, lead to violation of security policies.
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P; (Attacker)

SDN Controller o P~ p—
Action
No 00 [3=F(Calo). | 7=F(Calh),
Action f(CACp)=3 | f(CACH)=7

\ P, (Defender)
s3 Shuffle | f(Co), | 3—f(Calp), | 7—f(Calp),
—f(C) | f(CaLp) =3 | f(Calp)—7

P f(Co) | 3= f(Calp), | 3—f(Calh),
Mutation | ~f(©0) | FCalo) =3 | f(Calo)-3

Security Policies: [ r1: 10.1.0.1 (h1) - 10.1.0.2 (h2), ALLOW ]
[r2:10.1.0.0/24 (h1,h2) - 10.3.0.0/24 (h4,h5), DENY]
MTD Countermeasure: [VM Migration: (h1) - 10.3.0.3]
r3:10.3.0.3 (h1) © 10.1.0.2 (h2), ALLOW ]
r2 conflicts with r3, header match, different actions.

Fig. 1: SDN-managed cloud network with two-player zero-sum game formulation

Consider, the deployment MTD countermeasure IP mutation. If the host tar-
geted by the attacker is hl, with IP address 10.1.0.1, we have a rule r1 which
allows traffic between hosts hl and h2 (IP address 10.1.0.2). Another rule r2
prohibits any traffic between subnet under switch s1 (10.1.0.0/24) and subnet
under switch s3 (10.3.0.0/24). As a consequence of MTD, the host hl is migrated
to subnet under switch s3 and gets reassigned IP address 10.3.0.3. In order to
maintain service availability between hosts hl (new location) and h2, a new rule
r3 is added. This rule violates the security requirement of rule r2. The concept
of security policy conflict has been discussed in detail by Pisharody et. al. [12].
The conflicts can be resolved in an automated fashion or using manual analysis,
but this requires additional effort on part of defender. Thus, we consider the
consequence of MTD in our game theoretic formulation. Next, we discuss the
game-theoretic model.

3.1 Game Theoretic Model

We consider two players in set P, Attacker (P;) and the Defender (P;) rep-
resented in the game-theoretic formulation. The game theoretic model can be
defined using tuple {P, S, A, R, 7, v}. The variables players (P), state (S), ac-
tions (A), reward (R), transition function (7), discount factor (). The CVSS
system is well-known for tracking known vulnerabilities. We use CVSS metrics
for domain-specific reward modeling in this research work. Each vulnerability
is assigned a score that determines the severity of the vulnerability. Moreover,
there is metadata associated with each vulnerability, such as Access Complexity
(AC), which determines how easy or difficult it is to exploit it. For instance, if
AC is low, it is easier to exploit the vulnerability. The range of CVSS score is
(0,10], and AC = {LOW, MEDIUM, HIGH}.
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Actions The players have actions defined using A = {a1,a2}, attacker and
defenders’ actions. We consider that attacker can choose from actions a; = {No
Action, Recon, Exploitation}, and defender can choose from actions as = {No
Action, Shuffle, IP Mutation} (see Figure ).

States The state of game is defined in terms of privilege of each player. The state
transition depends on the actions of both the players. Suppose in the current
state of the game, and the attacker is at sp=user. If we consider the normal form
of the game, actions of players are ai=No Actions, a?= Exploitation, the attacker
will be able to compromise a given vulnerability, with transition probability
defined by 7 € (0, 1]. As a consequence, the state of the attacker will be s;=Root.
The transition probability will depend on the access complexity of the security
vulnerability as discussed by Chowdhary et. al. [4]. 7 = {so,a} x a3, s1}.

Transition Probabilities 7(so,al,al,a;) represent the state transition prob-
ability. By taking action a} in state s the attacker can transition to s; with a
certain probability, provided that the defender takes the action s}. The transi-
tion probability depends on how difficult it is to exploit a certain vulnerability,
and the action taken by defender. For instance if so = ‘user’, it is easy to exploit
a vulnerability al = ‘Exploitation’ and defender has no monitoring in place, i.e.,
a} = ‘No Action’, the attacker moves to state s; = ‘root’ with a high probability,
or (7 =0.9). We use access complexity as a measure of how easy it is to discover

or exploit a vulnerability.

Rewards We capture the rewards in terms CVSS score of the security vulnera-
bility, cost of deploying defense, and impact of the MTD countermeasure on the
state of the security policies (security policy violation leads to negative reward).
We consider reward as a function of cost of attack Cy4, the cost associated with
defense C'p. The cost of defense can be further considered as a cost of deploying
defensive countermeasure, and the cost of policy conflict management associated
with any security policy conflicts introduced by countermeasure such as firewall
rule. An example to illustrate this can be seen in Figure[I] The migration of host
(h1) to a different subnet creates a case of security policy conflict. thus utility
(reward) for the attacker R} can be expressed as 3 — f(Ca,Cp), where 3.0 is
the CVSS score of security vulnerability, and utility for the defender Ri can be
expressed as f(Cy,Cp) — 3.

3.2 Optimal Policy in a Markov Game

The goal of each player ¢ is to optimize its own long term reward, by finding
the policy 7" — A(A;). As a result the value function V' : S — R becomes
a function of joint policy of both agents w : S — A(A). The function can be
defined as 7(A|S) := II;enm;(4;,S). The joint policy can be expressed as

V;‘iri = E[tzo’YtRi(Suau 5t+1)|ai ~ 7'(.]st), 80 = ] (1)
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The -i represents the indices of all agents except agent i. The optimal perfor-
mance of an agent in a Markov Game setting is controlled not only by its policy,
but also by other players’ policies.

Nash Equilibrium in a Markov Game The Nash Equilibrium (NE) is the
joint policy m* = (wb*,...,7V"*) for each agent such that they do not obtain
higher incentive by deviating from policy 7*. The value function for NE can be
expressed as

Vii,*,ﬂ.fi,*(s) > Viiﬂ.r—i,*(s) Vﬂ'i (2)

T ™

For the agent i € N, policy obtained during NE 7** is best response to m
As noted by Sengupta et. al. [I7] NE exists for discounted general-sum Markov
Games, but it may not be unique in general. The calculation of equilibrium is
relatively straightforward in a zero-sum Markov Game setting as demonstrated
by Chowdhary et. al. [4]. The complexity of the value iteration algorithm used
is polynomial in terms of the number of states and actions.

* —1,%

4 Multi-Agent Reinforcement Learning Model

Reinforcement Learning (RL) consists of a single agent’s interaction with the
environment. The agent train’s over multiple iterations (epochs) and aims at
obtaining the best long term return. During each epoch, the agent observes the
statess, takes action a, and receives the reward R. The agent moves to state s’
on taking action a.

Q*(s,a) = R(s,a) + Z 7(s,a,8) max,Q*(s',a") (3)

s'esS

We employ a well-known model-free reinforcement learning algorithm Q-learning [23]
to learn the agent’s policy. Q-Learning is a popular mechanism of incrementally
estimating the utility values of executing an action in a given state. The Q-values
are continuously updated based on the equation. The value - is a discount factor
that characterizes the agent’s preference for future reward compared to immedi-
ate reward. The Q-learning shown in the equation above helps in find an optimal
policy to maximize the expected reward value. However, it suffers from a lack

of generality. The Q-learning agent will not be able to determine the action for
states it has not seen.

To deal with this situation, we utilize Deep-Q Network (DQN) [24], a neu-
ral network-based solution to estimate the Q-value function. The approximate
value function is parameterized as Q(s,a;0;) using a deep convolutional neu-
ral network, where 6; represents the Q-network model parameters at iteration
1. Q-network follows an experience replay approach, where agent’s experience
er = {S¢,a¢, 74, St41}, are stored in the dataset Dy = {ey,ea,..,e:}. During the
learning phase, the Q-learning updates are applied to experience samples drawn
uniformly and randomly from a sample pool [I1].
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In Multi-agent Reinforcement Learning (MARL) the agent interacts with the
environment and other agents in a sequential game. Each agents aims at optimiz-
ing its long term return. The MARL can be placed into different settings, a fully
cooperative, fully competitive, and a miz of the two [25]. Each agent has limited
information about the observation of other agents, leading to suboptimal local
decisions. Two popular representative frameworks used for the representation
of MARL are Markov/stochastic games, and extensive form games as noted by
Zhang et. al. [25]. We consider the MARL setting for the interaction between
attacker and defender in a fully competitive setting. The Nash Equilibrium (NE)
discussed in the previous section can serve as a model for robust learning in a
competitive setting.

5 Experimental Evaluation

We simulated an enterprise network with an industrial control system (Subnet2),
and IoT devices (Subnet3). The network comprised of 16 hosts, three networks
(Net1-3). A mixture of Windows and Linux systems were utilized for experi-
mental simulation. The network consists of four key services (SSH, FTP, HTTP,
and SMTP), as shown in Figure The network scan for obtaining CVSS score
was performed using standard network vulnerability scanning tools. We utilized
the network configuration, vulnerability parameters such as CVSS score, access
complexity to create a transition, and reward matrices. The attack vectors used
for empirical evaluation comprised reconnaissance, and vulnerability exploita-
tion, whereas the defender used approaches such as shuffle, and IP mutation as
part of his moving target defense (MTD) strategy.

—10[ =
& I q
200 o . e
/ LolA-- .
2 : yd - -
] -
= 400 |
- e
- /-
@ I'e
L ] Net3 T 00|
&
3
a
800 |
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(32) (3.2) [ENIREY)] ~1000¢ i & - [
).6 ). 2.8 0.9
(3.3) (3.4) (33) B34 (33) (34 Discount Factor (%)
{ftp, http} {ftp, ssh} {ssh, http} [ s~ BS=4k-MARL - »- BS=4k-R —= BS=6k-MARL - : |1H=!iu—|t.|
Subnet1 Subnet2 Subnet3

(b) Defender’s utility with different values
(a) Network Setup with multiple set of of 7, and batch sizes (4k,6k). The utility us-
vulnerabilities. The defense mechanism ing MARL formulation with defender play-
IP shuffle and service migration was used ing mixed strategy is greater than random
by the defender strategy (R)
We utilized OpenAl Gym [2] for formulation of Markov Game between the
attacker and defender. A multi-agent reinforcement learning solver with Deep-
Q Network (DQN) was used for the evaluation of optimal policy for the de-
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fender. We compared the defender’s utility for different settings of multi-agent
reinforcement learning strategy (see Figure . The negative value indicates
the cost induced by defense investment which is always negative in our zero-
sum game formulation. In MARL-4k and MARL-6k both attacker and defender
use reinforcement learning strategies in Markov game formulation, whereas in
the case of random strategies, R-4k, R-6k, the defender uses random strategy
against attacker’s reinforcement learning strategy. It can be observed that the
defender obtains a higher reward using the reinforcement learning strategy, -200
for v = 0.7, compared to -409 when playing random strategy. The utility ob-
tained for batch size 6k is higher than batch size of 4k, for different values of the
discount factor. The best utility for a defender is obtained when the discount
factor is 0.8 (-27 for batch size 4k, and -4 for batch size 6k). The utility value for
the defender increases with a discount factor up to value v = 0.8, but decreases
after that, which indicates that the defender needs to evaluate his strategy with
more emphasis on MTD strategy deployed for future states. Thus, the empirical
evaluation suggests that the defender can mimic the attacker’s action using a re-
inforcement learning policy. Thus, it comes up with an MTD strategy producing
higher utility instead of using a random MTD strategy to play all actions with
equal probability from the given action set.

6 Discussion

6.1 Continuous Model Evaluation

There are several challenges associated with the use of reinforcement learning
in the cybersecurity domain. The structure of network and services keeps on
changing in a network; hence, the number of states is rarely stationary. This
poses a challenge of continuous model update for the defender if they employ
a reinforcement learning model as part of their detection system. Another key
challenge in the MARL is the non-stationary environment induced by the ac-
tions of multiple agents learning simultaneously. In order to handle the issue, we
assume each agent learns independently with the goal of optimizing its policy.

6.2 Reward Formulation

Our game-theoretic framework’s reward structure also depends on CVSS score
of vulnerabilities present, cases of policy conflict and cost of attack/defense.
Thus we consider a factorized reward structure in our MARL network design.
This also helps address the state-space explosion problem associated with the
joint action space of two-player (combinatorial nature of MARL). Exiting MTD
research works [15], [22] have selected random values for attacker/defender util-
ity and cost. In this research we perform domain-specific reward modeling. The
attacker’s utility is a function of CVSS score, consequences of MTD countermea-
sures (security policy conflicts [12]), and attack/defense costs.
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7 Conclusion

We presented a moving target defense (MTD) solution based on zero-sum Markov
game in this research work. We utilized a Multi-agent Reinforcement Learning
(MARL) based solution to evaluate the defender’s utility. We performed a do-
main specific reward modeling to capture cost of MTD countermeasures in terms
of security investment, and policy conflicts introduced by MTD countermeasures.
We observed that the defender obtains higher utility when using a reinforcement
learning approach against an adaptive attacker, than a strategy of randomly de-
ploying MTD. As an extension of this work, we plan to perform an empirical
evaluation on scalable infrastructure to establish the generalizability of the so-
lution.
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